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Abstract
In this paper, we study the typical learning properties of the recently proposed
support vector machines (SVMs). The generalization error on linearly separable
tasks, the capacity, the typical number of support vectors, the margin and
the robustness or noise tolerance of a class of SVMs are determined in the
framework of statistical mechanics. The robustness is shown to be closely
related to the generalization properties of these machines.

PACS numbers: 0520, 0510, 0705M, 8436, 8718S

1. Introduction

Support vector machines (SVMs), recently proposed to solve the problem of learning
classification tasks from examples, have aroused a great deal of interest due to the simplicity
of their implementation, and to their remarkable performances on difficult tasks [1–3].
Classification of data is a very general problem, as many real-life applications, like pattern
recognition, medical diagnosis etc, may be cast as classification tasks. In the last few years,
much work has been done to understand how high-performance learning may be achieved,
mainly within the paradigm of neural networks. These are systems composed of interconnected
neurons, which are two-state units like Ising spins. As in magnets, the neuron’s state is
determined by the sign of the weighted sum of its inputs, which acts as an external field,
and of the states of its neighbours. Learning with neural networks means determining their
connectivity and the weights of the connections. The aim is to classify correctly not only the
examples, or training patterns, constituting our data or training set but also new data, as we
expect that the learning system will be able to generalize.

A single neuron connected to its inputs, the simple perceptron, is the elementary neural
network. It separates the input patterns into two classes by a hyperplane orthogonal to a
vector whose components are the connection weights. Thus, the simple perceptron can learn
without errors only linearly separable (LS) tasks. Most classification problems are not LS,
requiring learning machines with more degrees of freedom. However, the relationship between
the machine’s complexity, its learning capacity and its generalization ability is still an open
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problem. Feedforward layered networks, called multilayered perceptrons, are the most popular
learning machines. Their architecture is usually found through a trial and error procedure, in
which the weights are determined with backpropagation [4], a learning algorithm that performs
a gradient descent on a cost function. Its main drawback is that it usually gets trapped in
metastable states [5, 6]. Growth heuristics that avoid using backpropagation have also been
proposed [7, 8].

SVMs [1–3] are an alternative solution to the problem of learning from examples. The
idea underlying SVM is to map the patterns from the input space to a new space, the feature
space, through a nonlinear transformation chosen a priori. Provided that the dimension of
the feature space is large enough, the image of the training patterns will be LS, i.e. learnable
by a simple perceptron in the feature space. It is well known that, if the training set is LS,
there is an infinite number of error-free separating hyperplanes. Among them, the maximal
stability perceptron (MSP) has weights that maximize the distance of the patterns closest to
the separating hyperplane. The SVM weight vector is that of the MSP in feature space. The
patterns closest to the separating hyperplane are called support vectors (SVs); their distance
to the hyperplane is the maximal stability or SV margin. The important point is that the SVs
determine uniquely the MSP. Their number is proportional to the number of training patterns,
and not to the dimension of the feature space (which may be huge). Thus, increasing the
feature-space dimension does not necessarily increase the number of parameters to be learned,
a fact that makes the SVM very attractive for applications. For example, in the problem of
digit recognition [1], the input space of dimension 256 needs to be mapped onto a space of
dimension 2567 ∼ 1016, but the number of SVs is as low as 422. However, in spite of the high
performance reached by SVMs in realistic problems [1, 2], a clear theoretical understanding
of their properties is still lacking even if a few attempts have been made [9–13].

In this paper, we determine theoretically some of the learning properties of a class of SVMs
in order to get a better understanding of their relevant parameters. The paper is organized as
follows: in section 2, we introduce the class of SVMs considered. They are defined by a
particular family of mappings between the input space and the feature space. In section 3, we
consider the statistical mechanics of these SVMs and we address several important questions
about these machines. The generalization error in the particular case of learning an LS task is
shown to decrease more slowly than that of a simple perceptron (in input space) as a function
of the number of training patterns. The capacity increases proportionally to the dimension
of the feature space. The number of SVs and the SV margin present interesting scaling with
the number of features. In section 4, we introduce the probability of misclassification of
training patterns corrupted after learning, which is shown to be a decreasing function of the
SV margin. This property, that we call robustness or noise tolerance, may account for the
good generalization performance of SVMs in applications. Finally, in section 5, we discuss
our results and give some conclusions.

2. A family of support vector machines

2.1. Mapping to the feature space

We focus on SVMs defined by a nonlinear transformation � that maps the N -dimensional
input space onto a (k + 1)N -dimensional feature space through

ξ → �(ξ) = {ξ, φ(λ1) ξ, . . . , φ(λk) ξ} (1)

where the λi are functions of ξ. The components φ(λi) ξ (i = 1, . . . , k) are the new features
that hopefully should make the task LS in feature space.
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In the following we consider odd functions φ, and λi = ξ ·Bi where {Bi}i=1,...,k is a set of
k unitary orthogonal vectors (Bi ·Bj = δij ). For example, the k first generators {e1, e2, . . . , ek}
of the input space (e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . .) are one possible realization
of the Bi . In the thermodynamic limit considered below, any set of k randomly selected
normalized vectors Bi satisfies the orthogonality constraint with probability one, and the
slight correlation between the new features can be neglected.

The functions φ(λ) = sign(λ) and φ(λ) = λ are of particular interest. With the former,
simple scaling laws for the SVM will be deduced exactly from the properties of the MSP in
input space. If k = N , an SVM using the latter can implement all the possible discriminating
surfaces of second order in input space, defined by the quadratic kernelK(x,y) = x·y(1+x·y).
More complicated transformations �, equivalent to higher-order surfaces, are defined by other
kernels (for examples, see [1, 11]).

The weights of the connections of the SVM correspond to a (k + 1)N -dimensional vector
J = {J0,J1, . . . ,Jk}. Hereafter we consider normalized weights, J · J = (k + 1)N without
any lack of generality, but we do not impose any constraint on the normalization of each N -
dimensional vector Ji . The space of weights is similar to that of a multilayer perceptron with
one hidden layer composed of k + 1 units. In the following, we will compare some of the
learning properties of the SVM with k new features to those of monolayer perceptrons with
k + 1 units in the hidden layer. This is why we restrict ourselves to mappings with k � N new
features.

2.2. Learning strategy

The output of the SVM with weights J to a pattern ξ is σ = sign (J · �(ξ)). The aim of
learning is to determine a vector J such that the patterns of the training set are correctly
classified (we restrict ourselves to problems where error-free learning is possible). Any vector
J that meets these conditions separates linearly, in the feature space, the image by � of
patterns with output +1 from those with output −1. Due to the nonlinearity of the mapping,
this separation is not linear in input space. In the following, we restrict ourselves to quadratic
kernels for simplicity.

We assume that we are given a training set Lα of P independent N -dimensional vectors,
the training patterns {ξµ}µ=1,...,P and their corresponding classes τµ = ±1. The patterns are
supposed to be drawn with a probability density

P(ξ) = (2π)−N/2 exp

(
− ξ2

2

)
(2)

and the classes τ are given by an unknown function τ(ξ) called the supervisor or teacher.
The stability of a training pattern ξµ of class τµ in feature space is defined as

γ µ = τµ J · �(ξµ)√
(k + 1)N

. (3)

Geometrically, |γ µ| is the distance of the image �(ξµ) of pattern ξµ from the hyperplane
orthogonal to J and passing through the origin. Then, the aim of the learning process is to
determine a vector J such that σµ = τµ, or equivalently γ µ > 0, for all µ. If these conditions
are satisfied, we can define the margin as follows:

κ(J) = inf
µ

γ µ (4)

which corresponds to the distance of the closest patterns from the separating hyperplane. The
solution of the SVM consists in the MSP weight vector J∗ with the largest margin called the
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maximal stability or SV margin:

κmax(J
∗) = max

J
κ(J). (5)

The training patterns at distance κmax from the hyperplane are the SVs. It has been shown that
the MSP weight vector is a linear combination of the SVs [1, 14],

J∗ =
∑
µ∈SV

aµτµ�(ξµ). (6)

The aµ are positive parameters to be determined by the learning algorithm, which has to
determine also the number of SVs. Generally, this number is small compared with the feature-
space dimension, a fact that allows us to increase the latter considerably without increasing
dramatically the number of parameters to be determined. The SVM in input space (k = 0) or
linear SVM is the usual MSP, whose properties have been extensively studied (see [15] and
references therein).

3. Statistical mechanics of support vector machines

We obtain the generic properties of the SVM through the by now standard replica approach [16].
Results are obtained in the thermodynamic limit, in which the input-space dimension and the
number of training patterns go to infinity (N → +∞, P → +∞), keeping the reduced number
of patterns (or training set size) α = P/N constant. In this limit, the SVM properties are
independent of the training set. The appropriate cost function is

E(J,Lα, κ) =
P∑

µ=1

�(κ − γ µ) (7)

where � is the Heaviside function and Lα represents the training set. This cost function counts
the number of training patterns that have a stability smaller than κ in feature space. The largest
value of κ that satisfies E(J∗,Lα, κ) = 0 is the SV margin. The weight vector J∗ defines the
SVM. Its generic properties are determined by the free energy

f = lim
β→+∞

lim
N→+∞

− 1

βN
〈ln Z〉 (8)

where

Z =
∫

dJ δ ((k + 1)N − J · J) exp (−βE(J,Lα, κ)) (9)

is the partition function and β is an inverse temperature. In equation (8), the bracket represents
the average over all the possible training sets Lα at given α.

The learning problem consists in minimizing the cost function (or energy) (7). As a
consequence, we are particularly interested in the zero-temperature limit (or β → +∞). If the
problem is LS, then f = 0 for some κ � 0, meaning that error-free learning is possible. In
general, the probability of error-free learning vanishes beyond some value of κ . The maximal
value of κ for which f = 0 is the typical value of κmax(k, α).

The free energy is calculated using the replica trick [16–18]

〈ln Z〉 = lim
n→0

1

n
ln〈Zn〉. (10)
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3.1. Linearly separable task

We consider first the case of a teacher that is a simple perceptron in input space, of (unknown)
N -dimensional normalized weights K (K · K = 1). Thus, the classes of the training patterns
ξµ are τµ = sign (K · ξµ). In this case, an error-free solution exists for all α, and we are
interested in the generalization error εg(k, α), which is the probability that the trained SVM
misclassifies a new pattern ξ. Clearly, we do not expect that an SVM with k > 0 will
perform well on this task, as it corresponds to a case where the a priori selected feature
space is too complex. However, this may well be the case in real applications. We begin
by considering this LS problem mainly because other properties considered below, like the
capacity and robustness, can easily be deduced by disregarding, or setting to zero, some of the
order parameters introduced here. These are

Ra = Ja
0 · K√
Ja

0 · Ja
0

(11a)

va
i = Ja

i · Ja
i

N
(11b)

cabi = lim
β →+∞

β
(Ja

i − Jb
i )

2

2N
(a �= b) (11c)

for i = 0, . . . , k. Ja and Jb are the weight vectors of replicas a and b. The cross-overlaps
Ja
i · Jb

j (i �= j ) and K · Bi may be neglected for k � N , as they are of order 1/
√
N . The

parameters cabi are a generalization of the parameter xab = limβ→+∞ β(1 − qab) in [17, 18].
In fact, Gardner and Derrida considered a simple perceptron (k = 0) with normalized weights
J0 (J0 · J0 = N ), so that (Ja

0 − Jb
0 )

2/2N = 1 − Ja
0 · Jb

0 /N = 1 − qab in their notations. We
assume replica symmetry, i.e. Ra = R, va

i = vi , cabi = ci for all a, b. This assumption is valid
whenever κmax � 0 (or f = 0). The parameter R represents trivially the overlap between the
first N components of vector J and the teacher K. The overlap between Ji and K may be
neglected for i � 1, since for odd functions φ and orthogonal vectors Bi the new features are
uncorrelated. If φ were even, this would not be the case. The parameters vi are proportional
to the norm of the Ji . The sense of the parameters ci is more involved. They reflect how fast
the fluctuations of Ji around the minimum of the cost function decrease as the temperature
vanishes (β → +∞). In the case of a degenerate continuum of minima, these fluctuations
decrease too slowly, and the ci diverge. This is the case for κ < κmax.

A symmetry between the k vectors Ji , i � 1, due to the invariance with respect to
permutations of the Bi , together with the fact that the Bi are uncorrelated with K, allows us
to take vi = v1 and ci = c1 for i � 1. Introducing ṽ1 = v1/v0, where v0 is determined by the
normalization condition J · J/N = k + 1 = v0 + kṽ1v0, c̃1 = c1/c0 and c̃0 = c0/(1 + k), the
free energy is f (k, α, κ) = maxṽ1,c̃1,c̃0 minR g(k, α, κ; ṽ1, c̃1, c̃0, R), with

g(k, α, κ; ṽ1, c̃1, c̃0, R) = − c̃1 (1 − R2) + kṽ1

2 c̃0 c̃1 (1 + kṽ1)

+
α

c̃0

∫
Dλ1 · · ·

∫
Dλk

∫ κa

κa−b

Dy
(κ − y/a)2

e
H

(
−yR√

e

)

+2 α

∫
Dλ1 · · ·

∫
Dλk

∫ κa−b

−∞
DyH

(
−yR√

e

)
. (12)

Dy = dy exp(−y2/2)/
√

2π , H(x) = ∫ +∞
x

Dy, and a, b, e represent

a =
√

1 + kṽ1

e + R2
(13a)
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Figure 1. Generalization error εg in the case of learning an LS task by SVMs with respectively
k = 0, 1, 2, 5 and 10 new features as a function of the training set size α. The SVMs correspond
to the choice of the function φ(λ) = sign(λ) in the mapping to the feature space.

b = a

[
c̃0

(
1 + c̃1

k∑
i=1

φ2(λi)

)]1/2

(13b)

e = 1 − R2 + ṽ1

k∑
i=1

φ2(λi). (13c)

The generalization error εg(k, α) is written

εg(k, α) = 1

π

∫
Dλ1 · · ·

∫
Dλk arccos

(
R√

e + R2

)
(14)

where R and e extremize g(k, α, κ; ṽ1, c̃1, c̃0, R). The maximal stability κmax(k, α) is the
largest value of κ that satisfies c̃0(α, κ) = +∞ since f is non zero for finite values of c̃0.

If φ(λ) = sign(λ), the extremization of (12) with respect to ṽ1 and c̃1 gives ṽ1 = 1 − R2

and c̃1 = 1. Notice that for R = 1 (which corresponds to α = +∞), ṽ1 = 0 (thus, v1 = 0) as
expected: the new features are irrelevant because the task is LS. The fact that c̃1 = 1 means
that the fluctuations of J0 and Ji , i � 1, have the same behaviour in the limit β → +∞ despite
the fact that their norms are different (ṽ1 �= 1). After introduction of these values for ṽ1 and
c̃1 in (12), we obtain

g(k, α, κ; c̃0, R) = g
(

0, α/(k + 1), κ; c̃0, R
/√

1 + k(1 − R2)
)

(15)
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Figure 2. SV margin κmax for the learning of an LS task by SVMs with respectively k = 0, 1, 2, 5
and 10 new features as a function of the training set size α. The SVMs correspond to the choice of
the function φ(λ) = sign(λ) in the mapping to the feature space.

where the right-hand-side term corresponds to a simple perceptron trained with a training set of
reduced sizeα/(k+1), having an overlapR/

√
1 + k(1 − R2)with the teacher. After introducing

these values of the order parameters in (13c) and (14), we obtain εg(k, α) = εg(0, α/(k + 1)).
In figure 1 we represent the generalization error for the SVM with k = 0, 1, 2, 5 and 10 new
features as a function of the training set size α. As expected, the generalization error of the
SVM with k > 0 on an LS task is larger than that of the linear SVM. This is due to an entropic
effect, as the SVMs phase space grows with k whereas the size of the space of functions
considered, limited to the LS ones, remains the same. For large α, the generalization error
vanishes as 0.5005 (k + 1)/α, to be compared to the linear SVM that has εg ∼ 0.5005/α [15].

From the above scaling (15), the SV margin is κmax(k, α) = κmax(0, α/(k+1)). We can see
in figure 2 that the SV margin is an increasing function of the number k of introduced features,
for all the training set sizes. This property will have an important effect on the robustness of the
SVM against corruption of the patterns. Forα � 1, the SV margin is κmax(k, α) ∼ √

(k + 1)/α
and for α → +∞, κmax(k, α) ∼ 0.226

√
2π(k + 1)/α.

The number of SVs also follows from the distribution of stabilities ρ(0, α; γ ) of the MSP
in input space [15]. We obtain

ρ(k, α; γ ) = ρ1(γ, k, α)� (γ − κmax) + ρ0(k, α) δ (γ − κmax) (16)

where

ρ1(γ, k, α) =
√

2

π
H

[
− γ

tan
(
πεg(k, α)

)
]

exp

(
−γ 2

2

)
(17)

and ρ0(k, α), the typical fraction of training patterns that belongs to the set of SVs, is such that
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Figure 3. SV margin κmax for the learning of a random task by SVMs with respectively
k = 0, 1, 2, 5 and 10 new features as a function of the training set size α. The storage capacity
αc(k) corresponds to the training set size with a vanishing SV margin. The SVMs correspond to
the choice of the function φ(λ) = sign(λ) in the mapping to the feature space.

ρ(k, α; γ ) integrates to one. For α � 1,

ρ0(k, α) ∼ 1 −
√

2α

π(k + 1)
exp

(
−k + 1

2α

)
(18)

meaning that in that limit almost all the training patterns are SVs. For α → +∞,

ρ0(k, α) ∼ 0.952
k + 1

α
. (19)

The fraction of SVs vanishes when α → +∞. However the typical number of SVs,
PSV = ρ0P ∼ 0.952(k + 1)N , is large and only slightly smaller than the feature-space
dimension (k + 1)N . This result is in contradiction with what is observed in applications,
where the number of SVs is usually quite small compared to the feature-space dimension.

Vapnik showed that the fraction ρ0 of SVs is an upper bound of the leave-one-out estimator
of the generalization error [1, 2]. Our results show that the typical value of the generalization
error as a function of the number of new features is also bounded by the fraction of training
patterns that are SVs. In the large-training-set-size limit α � 1 we find ρ0 ∼ εg ∼ (k + 1)/α.
Only the prefactor differs (0.952 compared with 0.5005), showing that this bound is fair.

Solutions for other functions φ are more complicated, and we were not able to find a closed
expression of εg(k, α) for all α. It is however possible to show that the function φ(λ) = sign(λ)
gives the smallest generalization error at a given k, at least for small α. Most of the properties
obtained for this function φ remain valid for a general function φ. This is the case for the
generalization error and the SV margin, which increase with k for a given α. The fact that for
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large training set sizes (α → ∞) the number of SVs is close to the feature-space dimension,
despite the fact that the fraction of SVs vanishes, is also independent of the function φ.

3.2. Random task

We turn now to the more interesting problem of the capacity, defined as the typical number of
dichotomies that the SVM may implement, a quantity closely related to the VC dimension
of the learning machine [19]. We consider training sets where the patterns’ classes are
given by a random teacher, that selects outputs +1 and −1 with the same probability 1/2.
In this case, the order parameters are (11b) and (11c). The free energy is f (k, α, κ) =
maxṽ1,c̃1,c̃0 g(k, α, κ; ṽ1, c̃1, c̃0) where g(k, α, κ; ṽ1, c̃1, c̃0) is obtained from (12) by setting
R = 0:

g(k, α, κ; ṽ1, c̃1, c̃0) = − c̃1 + kṽ1

2 c̃0 c̃1 (1 + kṽ1)
+ α

∫
Dλ1 · · ·

∫
DλkH(b − κa)

+
α

c̃0

∫
Dλ1 · · ·

∫
Dλk

∫ κa

κa−b

Dy
(κ − y/a)2

2 e
(20)

where a, b, e represent

a =
√

1 + kṽ1

e
(21a)

b = a

[
c̃0

(
1 + c̃1

k∑
i=1

φ2(λi)

)]1/2

(21b)

e = 1 + ṽ1

k∑
i=1

φ2(λi). (21c)

The capacity αc(k), the largest reduced number of patterns that the machine can learn
without errors, corresponds to a vanishing SV margin, i.e. κmax(k, αc(k)) = 0. In this case,
the extremae of g(k, α, 0; ṽ1, c̃1, c̃0) correspond to c̃0(α, κ) = +∞ and ṽ1 = c̃1 for all the
possible functions φ. This result means that the capacity is αc = 2(k + 1), independently of φ,
provided that the new features are uncorrelated. This result generalizes to other feature spaces
the value deduced by Cover [20] through a geometrical approach, and analysed thoroughly by
Mitchison and Durbin [21] in the particular case of quadratic separating surfaces4.

The phase space of the SVM with k new features has the same dimension as that of a
monolayer perceptron with k + 1 units in the hidden layer and with a fixed Boolean function
between the hidden layer and the output. This is the case for the committee machine and the
parity machine (where the Boolean functions are respectively the majority and the parity of
the hidden units). Thus, it is interesting to compare the corresponding storage capacity. For
example, the optimal capacity for the committee machine scales like k

√
ln k, and that for the

parity machine like k ln k, for large k [22, 23]. The capacity of SVMs with k new features
is smaller than that of multilayered perceptrons with one hidden layer of k + 1 neurons. In
practice it is not easy to reach the theoretical capacity of multilayered perceptrons, as the
algorithm usually used to train them, called backpropagation, may get trapped in metastable
states. (Notice, however, that it has recently been shown [8] that an incremental learning
algorithm for the parity machine has a capacity close to the optimal, and avoids the main

4 Notice that the quadratic separating surfaces correspond to an SVM with φ(λ) = λ and k = N . In this case, our
calculation gives αc = 2(N +1) instead of N +1. The difference comes from the correlations between the new features
since the cross products ξiξj appear twice in the image of ξ by the mapping �. Our results are valid for k � N when
the correlations between new features may be neglected.
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drawback of backpropagation.) The relative poor capacity of the SVMs is compensated by the
fact that the corresponding learning algorithm is very efficient.

Let us now come back to the SV margin. It turns out that in the case φ(λ) = sign(λ), the
maximal stability κmax(k, α) scales trivially with k. The order parameters are ṽ1 = c̃1 = 1 so
that

g(k, α, κ; c̃0) = g(0, α/(k + 1), κ; c̃0) (22)

where the right-hand side corresponds to a simple perceptron of margin κ and reduced training
set size α/(k+1) in input space. The maximal stability is thus κmax(k, α) = κmax(0, α/(k+1)).
From [15] we deduce that for α � 1,

κmax(k, α) ∼
√

k + 1

α
(23)

and for α → α−
c ,

κmax(k, α) ∼
√

π

8

(
αc − α

αc

)
. (24)

If φ(λ) = λ, the property κmax(k, α) ∼ κmax(0, α/k) is valid for α � k. As κmax(0, α) is
a concave decreasing function of α [18], including new features may result in a large increase
of the SV margin. We will see in the following section that this property is useful for the
robustness of the SVM learning solution.

The number of SVs may also be determined through the distribution of stabilities (16)
with

ρ1(γ, k, α) =
√

2

π
exp

(
−γ 2

2

)
. (25)

The fraction of SVs is given by ρ0(k, α) = H(−κmax(k, α)). For α � 1, ρ0(k, α) ∼ 1 and
for α � α−

c , ρ0(k, α) ∼ 1/2. For all the training set sizes for which a positive SV margin may
be found, the number of SVs is a large fraction of the training patterns. This result seems in
contradiction with the numerical applications. However, the fact that the fraction of SVs is
larger than one-half is not surprising if we consider that this fraction is an upper bound of the
generalization error, which in the case of learning a random task is obviously equal to one-half.

4. Robustness or noise-tolerance

In most classification problems we expect that similar patterns belong to the same class. In
that case, having a large SV margin may be useful for the generalization performance. In
particular, if slightly corrupted versions of the training patterns are presented to the trained
SVM, its output should not change.

We consider an SVM that achieved error-free learning on a random task, with an SV
margin κmax > 0. We assume that the training patterns are corrupted, after the learning
process, through ξµ → ξµ + ηµ, where ηµ are randomly distributed vectors with probability
distribution

P(η) = (2π.)−N/2 exp

(
− η2

2.2

)
. (26)

The parameter . represents the amplitude of the perturbation. We will concentrate in the
following on small perturbations (. � 1).

We are interested in the classification error of the SVM on the corrupted patterns, defined
as εr(k, κ,.) = ∑

µ(σ
µ(.)− τµ)2/(4P) where τµ is the original pattern’s class and σµ(.)
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the SVM’s output to the corrupted pattern. The dependence on α is implicitly included through
κ = κmax(k, α). εr characterizes the robustness of the SVM with respect to a slight corruption
of the training patterns (. � 1). Input vectors close to a training pattern will be given the
same class with probability 1 − εr(κ,.).

In the case of the linear SVM (the simple perceptron), a straightforward calculation gives

εr(0, κ,.) = H(−κ)H(κ/.) +
∫ +∞

κ

DzH(z/.). (27)

If the margin is κ = 0, one-half of the training patterns have zero stability, and εr(0, 0,.) >

1/4. Thus, any small perturbation results in misclassifications. If κ > 0, then εr(0, κ,.) ∼
exp(−κ2/2.2) for small ., which means that if the margin is positive, we expect a small
number of misclassifications. We can also notice that the error εr decreases with increasing
stability κ , meaning that a better robustness and a smaller number of misclassifications are
obtained by increasing the SV margin.

Consider next the general SVMs, in higher-dimensional feature spaces. If φ(λ) = sign(λ)
and κ > 0,

εr(k, κ,.) ∼ . (28)

for small .. In comparison with the simple perceptron, the robustness of such an SVM is poor.
This is due to the discontinuity of the function φ: a small perturbation of the input pattern may
produce a strong perturbation on its stability. Notice also the absence of dependence upon κ ,
which means that in this case increasing the SV margin does not help to decrease the error.

In contrast, for continuous functions φ, like φ(λ) = λ, and small .,

εr(k, κ,.) ∼ exp
(
−h(k)

κ

.

)
(29)

where h(k) is an increasing function of k. In this case, the error εr is small and this corresponds
to a good robustness. We can notice that, like for the simple perceptron, the robustness increases
with the SV margin (since εr decreases). Thus, continuous functions φ are preferable for
improving the SVMs robustness or noise tolerance, and a large SV margin also improves the
robustness.

5. Discussion and conclusion

We have presented a study of the typical properties of a class of SVMs. We determined,
as a function of the number of new features and the number of training patterns, different
characteristics of the SVMs like the fraction of SVs and the SV margin, and the robustness
against pattern corruption, that give highlights on the behaviour of such SVMs.

In comparison with our mapping, that considered by Dietrich et al [11] introduced a
normalizing factor for the quadratic features to minimize the importance of the new features
compared to the input features. In the case of a teacher corresponding to a quadratic separating
surface, the generalization error was shown to present an interesting crossover between learning
of the linear and the quadratic features. The effect of this normalizing factor has been studied
in great detail by Risau-Gusman and Gordon [12, 13]. One of its effects is to reduce the
entropical contribution that leads, in the case of an LS task, to a generalization error in feature
space much larger than that of a simple perceptron learning in input space.

We determined the fraction ρ0 of SVs for the class of SVMs considered; this fraction
seems to be not only an upper bound but also a fair estimation for the generalization error.
In the case of an LS task, the asymptotic behaviour in the limit of large training set sizes is
correctly predicted.
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We showed that the SV margin increases with the number of new features. This may
explain the good results in real applications. Assuming some continuity in the classification
of the patterns, in other words, that two patterns close together belong to the same class with
a large probability, the probability of misclassification of training patterns slightly corrupted
(or noise tolerance) is then of great importance and directly related to the generalization error.
In fact, in actual applications we expect that patterns belonging to different classes be set in
clusters well disconnected one from the other. In that case, the separating surface should pass
through regions with small density (or probability) of patterns, so that the number of SVs,
which are patterns close to the separating surface, is small. This situation is very different
from that of the LS task analysed in section 3.1, where the separating hyperplane between the
two classes lies in a region where the probability of training patterns is large. In the case of
the random task considered in section 3.2 the training patterns belonging to different classes
were not well separated in clusters, but randomly mixed. We showed that the noise tolerance
or robustness is enhanced by large margins in the case of SVMs with continuous mappings
from the input space to the feature space. This explains why maximizing the margin is so
important: the probability that the trained SVM will assign the same class to the corrupted and
to the original training patterns is enhanced by large margins.
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